Feature extraction of dual-pol SAR imagery for sea ice image segmentation

نویسندگان

  • Peter Yu
  • A. K. Qin
  • David A. Clausi
چکیده

Dual-polarization synthetic aperture radar (SAR) image data, such as that available from RADARSAT-2, provides additional information for discriminating sea ice types compared to single-polarization data. A thorough investigation of published feature extraction and fusion techniques for making optimal use of this additional information for unsupervised sea ice image segmentation has been performed. Segmentation was performed by transforming the dual-pol data (a) into a new two channel feature space (multivariate) and (b) into a fused single channel feature space (univariate). Both real and synthetic dual-polarization SAR sea ice images were transformed using a variety of methods and segmented using a recognized SAR segmentation algorithm (IRGS). The results indicate that the untransformed data provides consistent and high segmentation accuracy, avoids feature extraction pre-processing, and is thus recommended for SAR sea ice image segmentation using dual-pol imagery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Segmentation of RADARSAT-2 Dual-Polarization Sea Ice Imagery

The mapping of sea ice is an important task for understanding global climate and for safe shipping. Currently, sea ice maps are created by human analysts with the help of remote sensing imagery, including synthetic aperture radar (SAR) imagery. While the maps are generally correct, they can be somewhat subjective and do not have pixel-level resolution due to the time consuming nature of manual ...

متن کامل

Texture Segmentation of SAR Sea Ice Imagery

Texture Discrimination of SAR Sea Ice Imagery The di erentiation of textures is a critical aspect of SAR sea ice image segmen tation Provision of images that identify pertinent ice types is important for the operational ice breakers ships oil platforms and scienti c ie global warming monitoring communities Although a human is readily able to visually segment any textured image no unsupervised m...

متن کامل

A KPCA texture feature model for efficient segmentation of RADARSAT-2 SAR sea ice imagery

Sea ice information obtained from synthetic aperture radar (SAR) images is crucial for ensuring safe marine navigation and supporting climate change studies in polar regions. We propose a kernel principal component analysis (KPCA) local texture feature model for efficient sea ice segmentation. The proposed KPCA texture feature model is significant for several reasons. First, it takes into accou...

متن کامل

Operational Segmentation and Classification of SAR Sea Ice Imagery

The Canadian Ice Service (CIS) is a government agency responsible for monitoring ice-infested regions in Canada’ s jurisdiction. Synthetic aperture radar (SAR) is the primary tool used for monitoring such vast, inaccessible regions. Ice maps of different regions are generated each day in support of navigation operations and environmental assessments. Currently, operators digitally segment the S...

متن کامل

Preserving Texture Boundaries for SAR Sea Ice Segmentation

Texture analysis has been used extensively in the computer–assisted interpretation of SAR sea ice imagery. Provision of maps which distinguish relevant ice types is significant for monitoring global warming and ship navigation. Due to the abundance of SAR imagery available, there exists a need to develop an automated approach for SAR sea ice interpretation. Grey level co-occurrence probability ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012